科学研究

当前位置:首页 > 科学研究 > 学术预告 > 正文

2023年报告64:德国曼海姆大学陈丽教授:Quantitative convergence in relative entropy for a moderately interacting particle system on $\R^d$

时间:2023-12-06 09:50:17 来源:BETVLCTOR伟德官方网站 作者: 阅读:

报告题目Quantitative convergence in relative entropy for a moderately interacting particle system on $\R^d$

报告人:陈丽

报告时间:20231220日(周三)15:00开始

报告地点:腾讯会议(807-874-434

报告摘要:In this talk, I will show how to combine the relative entropy method introduced by Jabin and Wang and the regularized $L^2(\R^d)$-estimate given by Oeschläger to prove a strong propagation of chaos result for the viscous porous medium equation from a moderately interacting particle system in $L^\infty(0,T; L^1(\R^d))$-norm. In the moderate interacting setting, the interacting potential is a smoothed Dirac Delta distribution, however, current results regarding the relative entropy methods for singular potentials do not apply. The result holds on $\R^d$ for any dimension $d\geq 1$ and provides a quantitative result where the rate of convergence depends on the moderate scaling parameter and the dimension $d\geq 1$. This is a joint work with Alexandra Holzinger and Xiaokai Huo.

报告人简介:陈丽,教授,2001年吉林大学取得博士学位,20032013在清华大学任教,2014年至今德国曼海姆大学讲座教授。研究方向是偏微分方程及应用,具体研究兴趣集中在反应扩散及交叉扩散方程组,多粒子系统的平均场极限及动力学模型,量子力学中的物质稳定性问题等。在《Comm. Partial Differential Equations》《SIAM J. Math. Anal.》《J. Stat. Phys.Phys.》《J. Differential Equations》等杂志发表SCI收录学术论文80余篇。曾被应邀到美国、加拿大、法国、意大利、奥地利等国家参加学术会议并做学术报告20余次。